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Crescent singularities and stress focusing in a buckled thin sheet:
Mechanics of developable cones

Sahraoui Chaı¨eb* and Francisco Melo
Departamento de Fı´sica de la Universidad de Santiago, Avenida Ecuador 3493, Casilla 307, Correo 2, Santiago, Chile

~Received 27 April 1998; revised manuscript received 18 May 1999!

The localization of deformation is a simple consequence of the fact that bending a thin sheet is energetically
cheaper than stretching it. In this paper we investigate conical singularities that appear on a crumpled sheet and
called developable cones (d cones!. We found that for a sample of a finite thickness the singularity is never
pointlike but has a spatial extension in the form of a crescent. A further deformation of thed cone leads to a
transition to a plastic deformation equivalent to a decrease in the singularity size characterized from curvature
and profile analysis. The crescent radius of curvature is measured both at small deformations and at large
deformations. It is found that, during the buckling process, the curvature of the crescent exhibits two different
scalings versus the deformation. From the cone profile, we measured the reaction force of the plate to defor-
mation; and from force measurements, the energy that is necessary to create the singularity is characterized.
@S1063-651X~99!09310-1#

PACS number~s!: 46.25.Cc, 46.70.2p, 62.20.Fe, 68.55.Jk
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I. INTRODUCTION

Strong deformations of membranes and thin shells spa
wide range of length scales. On the microscopic sc
quenched disorder in partially polymerized membranes
thermal fluctuations induce, without strain, a crumpling tra
sition at the melting point, below which the membrane b
haves like a two-dimensional~2D! solid. At the crumpling
transition, partially polymerized vesicles look like drie
prunes@1–3#. Some inorganic compounds such as nanotu
were observed in a phase that is similar to a crumpled s
@4# and could be buckled like macroscopic sheets@5#. At
large scale, and in the~211! dimensional general relativity
defect-induced deformations of a 2D space-time sheet
characterized by the presence of a conical singularity@6#. In
intermediate scales, the stability of shells and thin ela
plates is of great importance in structure engineering
packaging material development@7#. When a thin elastic
sheet is confined to a region much smaller than its size,
morphology of the resulting crumpled membrane is a n
work of straight ridges or folds that meet at sharp points
vertices. Singularities that appear on such a crumpled sh
as a result of the stress focusing, have recently been
subject of several investigations@8–16#. For instance, in the
case of a crumpled sheet, developable cones were foun
be the solution to Fopple–von Ka´rman ~FvK! equations for
large deflections@9#. In the following we will refer to these
singularities asd cones. Developable cones are a spec
class of developable surfaces. Developable surfaces are
tained from, or applied to, a plane, without changing d
tances. Unlike developable surfaces, a developable cone
a zero Gaussian curvature everywhere except at the
called thesingularity, where the curvature diverges. A sca
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ing analysis of the FvK equations has shown that strain
deformation energy are located within the ridge region t
separates two singularities@12#. In practice, it has been
shown that singularity energy plays an important role in
lecting characteristic lengths in an axially buckled cylindric
sheet. These lengths were shown to be the distance sep
ing two d cones@14#, whose selection was due to a comp
tition between bending energy, which favors large crease
flattening the surface, and the singularity energy, which
vors smaller creases by respecting geometrical constra
like the natural curvature of the cylindrical shell. This line
relation between the crease length and the panel radius fo
experimentally in @14# was imposed, between the crea
length and the radius of a ball made by crumpling an ela
sheet, as a condition to fulfilling the scaling of the deform
tion energy versus the crease length@11#. In a study of a
conical singularity, the shape of a developable cone was
culated from the condition of zero in-plane stress and de
opability @16#. However, a study of the postbuckling state
still lacking, which could explain the appearance of the ir
versible crescent shape of conical singularities in a crump
sheet@17#.

In this paper we study mechanical and topological pro
erties of the crescent singularity left after postbuckling a c
cular sheet of thicknessh. Unlike zero thickness sheets stu
ied theoretically, the singularity in a real sheet is not
pointlike vertex, but has a spatial extension over a radiusRc .
This crescent appears as a strain-localization-induced cu
ture focusing at the ridge separating the convex region
the concave region of thed cone. This focusing is tested b
measuring the growth of the curvature on the ridge and
the concave part. It is also revealed by measuring the re
tion force of the plate at the ridge and at the concave p
The singularity energyis measured as the energy dissipat
when the crescent appears.

This paper begins with a description of the setup. In S
III we present the profiles of thed cone, from which we
retrieve the opening and the aperture angles. In Sec. IV
discuss in more detail a simple model@15# that describes the

i-
e.
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6092 PRE 60SAHRAOUI CHAÏEB AND FRANCISCO MELO
properties of thed cone as an isometric deformation obtain
by pure bending. In Sec. V, we present and discuss the l
properties, topological and mechanical, of thed cone. Sec-
tions V A, V B and V C are a detailed description of th
geometrical model already presented in@15#. In Sec. VI we
present force measurements from profiles and from di
load measurements, the latter allowing us to measure
singularity energy. Finally, an eventual analogy between
d cone and the dislocation problem is discussed, and fu
implications are presented in Sec. VII.

II. EXPERIMENTAL SETUP

Thed cone is obtained on a thin circular plate by pushi
a round tip~0.5 mm diameter! into the center of the principa
axis of the plate. In this study we used circular plates m
from both 0.05- and 0.1-mm-thick sheets~copper, brass
steel, and transparencies or acrylic!; the results discussed ar
mainly from the 0.1-mm-thick sheets. In order for the dev
opable cone to to form, we allow the border of the shee
move freely in a circular rigid frame while the tip is pushe
in. The radius of the frame is 5% smaller than the sam
radiusRf ~Fig. 1!, whose radius ranges from 15 to 90 mm
The opening anglef of the d cone ~defined as the angle
between the horizontal plane and the cone convex part
eratrix! is varied by pushing the tip perpendicularly to th
circular plate and measuring the displacementd using a pre-
cision micrometer with a resolution of 1022 mm. A minia-
ture load cell is mounted under the pushing tip so that
force exerted by the plate can be measured. The pushin
is mounted on a rigid 20-cm-long and 1-cm-thick steel p

FIG. 1. Setup where thed cone is performed and where th
profilometric measurements are achieved.
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shaped cylinder. This bar is rigid enough to be inflexib
when pushing the plate. A profilometric tip, mounted on t
active part of a position sensor transducer, enables u
probe the surface of the sheet. Two motors allow the tip
scan the whole plate surface. The first motor moves the
on a miniature automatic displacement guide mounted al
the radial direction and the second motor rotates the fra
around its axis. The radial and angular directions are mar
in Fig. 1 as~r! and (u), respectively. The measurement pr
cision of the developable-cone opening angle is appro
mately 731024 rad. The experiment is controlled and da
are acquired by a personal computer~PC! equipped with
analog-to-digital converter and GPIB boards. In order
avoid stretching the plate when a deformationd is imposed,
a part of the plate must lose contact with the frame, lead
to a concave region whose amplitude increases asd increases
and whose location is randomly distributed on the plate
the pushing tip deviates from the center by a distance on
order of a few millimeters, the characteristics of the sh
deflection will not change significantly, but the nucleation
the cone will occur in the region where the pushing tip
closest to the frame border. In some cases, two or foud
cones appear. Pushing the plate further, only one of
cones remains and its amplitude increases. In the follow
we present local features of the buckled plate obtained
probing the surface with a profilometer.

III. PROFILES

In order to characterize the local geometry of thed cone
fully, we built a profilometer~shown in Fig. 1! that consists
of a tip connected to a transducer controlling the displa
ment of the tip. The moving frame that supports the sam
can have a very low angular velocity. The profilometer
able to resolve less than 0.01 mm in the vertical~z! and
horizontal directions (r ,u). Figure 2 displays the profile ob
tained at a given distancer from the singularity, and for a
given deformationd. From this profile, it is possible to mea

FIG. 2. Profile of thed cone in Cartesian coordinates. Notice th
angle 2u0 that measures the aperture angle between the po
where the plate loses contact with the frame.
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PRE 60 6093CRESCENT SINGULARITIES AND STRESS FOCUSING . . .
sure the maximum deflectionfmax made by the concave re
gion with the horizontal direction as a function of the ang
f0 made by the convex region and the horizontal directi
From Fig. 2 we measured the aperture angle of the deflec
in theu direction. This angle was found to be independen
the plate size and the deformation for a given geome
Figure 2 displays the maximum deflection and how the an
2u0 is measured. The horizontal line corresponds to the c
vex part of the cone. At high deformations, the two proc
dures give two different angles. From this figure we meas
the maximum deflectionfmax, which is the lowest point in
the Fig. 2, withzmax(u)5rfmax(u), where r is the distance
measured from the pushing tip. In Fig. 3 we display t
dependence offmax versus the deformation expressed by t
anglef05d/Rf . The best linear fit to the data in the figu
above givesfmax;3.73f0. We will show in the following
section that this selection of aperture angle 2u0 and maxi-
mum deflection as a function of the deformation can be
plained by a minimization of the bending energy, taking in
account the fact that the deformation is isometric. In po

FIG. 3. Plate maximum deflection as a function of the an
between the convex part and the horizontal plane. The distanc
the pushing tip is 3 mm.

FIG. 4. Contour plot of the sheet profile in polar coordinates
the angleu. ~a! d51.41 mm; ~b! d55.48 mm. The axes are in
millimeters. The different curves correspond to different distan
from the pushing tip.
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coordinates, the plate profile looks like the ones displayed
Fig. 4. The (1) sign refers to positive curvature in the co
vex part and the (2) sign refers to negative curvature in th
concave region. Each profile was obtained for a fixed d
tance from the pushing tip. Figure 4~a!, corresponds to pro-
files of thed cone for smalld and for different distancesr
from the pushing tip, and the profiles for large deformatio
are shown in Fig. 4~b!. It is clear from this figure that the
convex part~circular curve in the figure! is off-center. This
shift of the d-cone tip will be explained as particular tod
cones made from a nonzero thickness sheet.

IV. ENERGY MINIMIZATION OF AN ISOMETRIC
DEFORMATION

In the following we show that a simple model consistin
of a minimization of the curvature energy, taking into a
count the fact that the deformation is isometric, can expl
the above results and can describe thed cone far from the
singularity. The general equation of a cone centered inO, in
cylindrical coordinates, is written asz5r f (u). For
convenience, we rewrite the parametric equation,z
5r tanf(u) and r 5R cosf(u), whereR is the distance to
the tip andu is the polar angle. A cone corresponds to
given functionf(u), where f is defined as above. For
given deformation,e5d/Rf5tanf0, whered is the amount
of the micrometer vertical displacement. If we writef(u)
5f0, for uuu.u0,

f~u!5f01gS 11cosp
u

u0
D for uuu,u0 . ~4.1!

The functionf(u) defines then a cone that remains in co
tact with the circular frame foruuu.u0. The d cone is de-
tached from the plate over an angle equal to 2u0 that corre-
sponds to the deflection. We assume thatd is small and that
g andf0 are of the same order of magnitude. To first ord
the total curvature of the surface then reduces tok5(f
1f9)/R. The corresponding energyEk ~per unit ofR) is

Ek5
K

2E2p

p ~f1f9!2

R2
RAcos2f1f82du

;
K

2R F2pf0
214u0f0g1S 3u02

2p2

u0
1

p4

u0
3 Dg2G .

~4.2!

For an unstretchable plate, the lengthL of the correspond-
ing line atR5const must be equal to 2pR, so that

2pR5L5E
2p

p

RAcos2f1f82du

;F2p2pf0
222u0f0g2S 3u0

2
2

p2

2u0
Dg2GR.

~4.3!

Equation~4.3! gives g as a function off0 and u0. Re-
placingg by its value in Eq.~4.2! and minimizingEk with
respect to u0, one finds 2u0;2.09 rad;120° and g
;1.38f0. This last relation confirms our assumption thatg
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6094 PRE 60SAHRAOUI CHAÏEB AND FRANCISCO MELO
andf0 are of the same order of magnitude. An exact so
tion of a similar problem gives 2u0;140° @16#. As pointed
out above, our result is valid for low deformations. The th
oretical value of the aperture angle 2u0 is in good agreemen
with the experiment~Fig. 2!. The aperture angle between th
points where the plate loses contact with the frame is ab
(11065)°. Experimentally, and even for larged, the aper-
ture angle depends very little ond when measured in the
plate coordinates. The theoretical maximal deflection an
fmax5f(0) is proportional tof0 and equalsf(0)5(f0
12g)53.76f0. This result is also in good agreement wi
the experimental data, even at larged, since the best fit in
Fig. 3 givesf(0)53.73f0. It is worth noting that these
results are valid for elastic deformations. The global shap
the d cone, however, as shown in Figs. 4 and 2, is due
geometric constraints. In Sec. V we will study the geome
cal properties of such a cone.

V. LOCAL PROPERTIES OF THE DEVELOPABLE CONE

In this section we present the general features of the
face of a developable cone. From the profiles presente
the previous section, we can retrieve the local curvature
the concave part and the ridge~the region separating th
concave region and the convex region! as well as the curva
ture of the crescent shape at the pushing tip. Also we
show that developable cones made from a thick sheeh
Þ0) are not centered at the pushing tip. We will then defi
a function called thed-cone anisotropy, which measures ho
far the finite-thicknessd cone is from the zero-thicknessd
cone.

A. Anisotropy

If one looks carefully at the profiles in Fig. 4, one notic
that for small deformations the lines joining the convex
gion to the concave region are sharper than the ones c
sponding to large deformations. Also the origin of the circ
lar part of the profiles is not centered at the coordinat
origin but shifted to the right of Fig. 4. This shift is due to a
anisotropy of the plate. This anisotropy is due to the fact th
when pushing the plate to make the deflection that co
sponds to thed cone, the tip of thed cone obtained is then
shifted to allow the deflection to form. In other terms, it co
more energy to produce a small point with a high curvat
than a large deflection with small curvature. Hence, to m
mize the energy necessary to make a sharp vertex, the
gularity is ejected out of the plate by a distance that is,
low deformations, equal to the frame radius, and the p
surface looks smooth. The generatrices no longer meet a
pushing tip. In the following we will show how, by measu
ing the distance by which the origin of the cone has shift
it is possible to characterize the deviation of the real co
from a theoretical cone. This shift can be quantified by m
suring what we call thed-cone anisotropyA, defined as the
ratio @z(p)2z(p/2)#/z(p), wherez(u) is the height of the
sheet measured at the polar angleu andp corresponds to the
very right point in the profiles of Fig. 4.

B. Geometrical model

If we look at thed-cone ridges, where the crescent a
pears, we find that their loci are a plane. Furthermore,
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cone generatrices do not meet at the pushing tip. From
4, we notice that the circular part, that is, the convex regi
is not centered at the coordinates’ origin. The obtained c
looks as if an axisymmetric cone has been cut by a pl
defining then an aperture angle 2u0. In Fig. 5, we show the
geometrical location where the plane and the cone mee
the following we show the origin of this ‘‘anisotropy’’ and
geometrical scheme of thed cone.

If S, A, andM belong to the cone, they are related by

SMW 5lSAW , ~5.1!

whereS is the tip andA is on the line defined by the inter
section of the moving frame and the plate of Fig. 1. IfO is
on the pushing line then,OAW 5R(cosu iW1sinu jW). Also we
have

SAW5~R cosu2xs! iW1R sinu jW2zskW ,
~5.2!

SMW 5~xm2xs! iW1~ym2ys! jW1~zm2zs!kW .

From Eq.~5.1! we have

xm5xs1l~R cosu2xs!,

ym5lR sinu, ~5.3!

zm5~12l!zs .

In the previous relations, (xm ,ym ,zm) are the coordinates
of M and (xs ,ys ,zs) are the coordinates ofS. In our caseR is
the frame radius. One needs to find a relation betweenl and
u; in fact, this can be easily achieved by calculating a d
tancer 25xm

2 1ym
2 on the cone. Atr constant we have

l2@~R cosu2xs!
21R2 sin2u#12lxs~R cosu2xs!

1xs
22r 250. ~5.4!

This equation gives usl(u) for a givenr. The height is now
given byzm5@12l(u)#zs . It is more convenient to revers
the z axis and consider a direct cone so that the generatr
are in the half-planey.0 axis. We then definezm5d2 z̃m
~the profiles in Fig. 4 are obtained in the reversed axis! and
obtain

z̃m5l~u!d1„12l~u!…z̃s . ~5.5!

FIG. 5. Geometrical construction of thed cone obtained after a
cut in the axisymmetric cone by a plane.
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If we plot the lines z̃(u) we recover the experimenta
profiles in Fig. 4. In Fig. 6, we display the profiles calculat
from this model. The different profiles correspond to diffe
ent distancesr from the origin. The deformation is measure
by calculatingxs . The frame radius is the one used in t
experiments and the thickness is set to 0.1 mm. From
figure we notice that the qualitative shape of thed cone can
be obtained from a simple geometrical model with the ans
~4.1!. In Fig. 7 we plot the heightz̃m versus the polar angle
u. From this figure the opening angle is equal to 114°. T
aperture angle is selected geometrically.

The cut in Fig. 5 then defines a hyperbola whose equa
is obtained from the following construction: The plane wh
cutting the cone defines an anglea, so that tana5xm /(zm
2d)52(R cosu0)/d. The intersection of the plane and th
cone is given by.

X5lR sinu,

Y52~1/sina!@xs~12l!1lR cosu#, ~5.6!

FIG. 6. Contour plot of thed-cone profiles obtained from Eq
~5.5!. Each curve corresponds to a distance from the origin.
distancexs is set to 1. The frame radius is set to 37 mm and
thickness to 0.1 mm. The different distances arer 52,4,6,12~scaled
units!.

FIG. 7. The plate heightz̃m obtained from the geometrica
model. The parameters are the same as in Fig. 6. The distance
tip is two scaled units.
is

tz

e

n

with

l~ t !5@~zs2d!tana2xs#/~R cost2xs1zs tana!.
~5.7!

Eliminating l(t) between Eqs.~5.6! and ~5.7! we find

X2S 11
xs

RD 2

~d21R2 cos2u0!1Y2@~xs1~R1xs!cosu0#2

2R222Yxs~R1xs!~11cosu0!2Ad21R2 cos2u050.

~5.8!

Equation~5.8! is the equation of a hyperbola whose cu
vature at the tip is given by

k5
~R1xs!Ad21R2 cos2u0

R2xs~11cosu0!
;

1

2xs
~xs!R!. ~5.9!

We showed that with this one-dimensional geometri
model we can characterize the size of the singularity, a
found that it belongs to a hyperbola defined as the inters
tion of a plane with a perfect cone. For a ‘‘real’’ sheet, it
energetically favorable to create a deflection by bending
rejecting the singular point far away from the tip and to ha
the obtainedd cone not have a singular tip or a vertex.

C. The shift from the anisotropy

From Fig. 5 the anglea is given by tana5d/R, so that
zs52xs tana. We define the anisotropyA(r ,Rf ,xs), keep-
ing in mind that the deflection is centered atu50:

A5@ z̃~p!2 z̃~p/2!#/ z̃~p!

5@2rR1xs~r 2R!1AB#/r ~xs2R!, ~5.10!

whereB5r 2R22xs
2(r 22R2). The distancexs is obtained by

measuring the heights from the profiles, such as the o
depicted in Fig. 4, and fitting the data with expression~5.10!,
giving the anisotropy versus the frame radiusRf and the
distancer. In Fig. 8, we show an example of the anisotro
measured from the profiles, where the line is the best fit w
the formula~5.10! for a given deformation. The anisotropy
found experimentally, decreases when increasingr. This ef-
fect is due to the fact that, close to the singularity, the pl
suffers a stress focusing, and an irreversible deformation,

e
e

the

FIG. 8. The anisotropyA as a function of the distancer. The
deformation is 1.5 mm.
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to stretching, would take place if we increased the deform
tion. Further away from the singularity, the plate surface s
fers pure bending.

In the next section we will show that the local curvatu
of the concave part does not follow a law of the form 1/r , but
the coordinates are shifted by a value we callr s that depends
on the deformation. The shift in coordinates’ originr s is
correlated to the displacement of the singularityxs . We will
show, that due to stress focusing, this distances decr
when the deformation is increased.

D. Size of the singularity and stress focusing

We have measured the local curvature of the concave
gion and found that, for small deformations, the radius
curvature is linear with the distance from the tip, but t
origin is shifted byr s . It is well known that at each point o
a perfect cone there is no curvature towards the vertex.
curvature decreases like 1/r , wherer is the distance from the
vertex. In Fig. 9, we display the local curvature versus
distance from the pushing tip. The line is the best fit to
function of the form 1/(r 1r s). From Fig. 9 the origin of the
coordinates is not centered at the pushig tip, but is shifted
a distancer s . This distance is found to be a decreasing fun
tion of the deformation as well as the distancexs . This shift
in the cone origin is due to the fact that it is cheaper to m
a bent smooth surface than a sharp pointlike vertex wit
high curvature. As a result of the stress focusing, the siz

FIG. 9. Concave-part local curvature versus the distance to
singularity, for different smalld. The line is a best fit to the function
1/(r 1r s).

FIG. 10. The shift distancer s and the singularity displacemen
xs versusd.
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the singularity, which at small deformations has a size of
same order of magnitude as the frame radius, decreases
the deformation increases. In Fig. 10 we depictxs and r s
versus the deformation.

Notice that bothr s andxs decrease when the deformatio
is increased. As the bending rigidity acts likeh3 whereh is
small, the creation of a punctual singularity costs more
ergy than making a simple deflection by bending the surfa
From Fig. 10 we notice that at small deformations the sin
larity is rejected to infinity. The size of the singularity is o
the order of magnitude ofRf or even larger. When the de
formation increases, the size of the singularity decrease
increasing the distancesxs and r s . The stress focusing ca
be seen as a decrease in the singularity size by strain lo
ization.

E. Curvature at high deformation: Stretching effect

As we increase the deformation, a line with a differe
texture from the rest of the plates appears at the ridges,
the curvature increases. In order to characterize this tra
tion we measured the curvature at high deformations, bot
the concave region and at the ridge. In Fig. 11 we show
curvature of the concave region~a! and of the ridge line~b!.
Each data set corresponds to a given deformation.

From Fig. 11 we notice that the curvature is no longer
the form 1/r but decreases exponentially with the distan
like C0e(2r /r c), wherer c is a characteristic distance. In Fig
11~a! the characteristic distancer c is constant versus the de
formation, whereas on the ridge of Fig. 11r c decreases with
increasing the deformation. This behavior is due to the f
that the crescent appears only on the ridge. In other wo
the plastic deformation induced by stretching is felt on t
ridge where the plate is folded and where the stress is c
centrated. The slope of the top line in Fig. 11~a! reaches a
value that corresponds to the radius at which the yield li
of a 0.1-mm-thick copper sheet is exceeded and wher
permanent scar appears@18#.

The deviation of the curvature from 1/r behavior to an
exponential is due to the fact that at larged the yield limit of
the material is exceeded and stretching starts to be m
important than pure bending because, contrary to a
sheet, the latter system is squeezed within a circular fra
This fact explains why the stretching effects are noticea
and the deflection near the borders looks rather more
tened than if thed cone were border-free. As a first approx

e

FIG. 11. d-cone local curvature versus the distancer from the
pushing tip for different deformations.~a! The local curvature of the
concave part, wherer c is constant and equal to 20 mm.~b! The
ridge local curvature, wherer c decreases whend increases. We
reported the values of the opening angle and notd.
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mation we assume that concave part is an isolated stripe
further pushing the plate beyond the yield limit the stri
starts to bend and the region near the singularity at the p
ing tip suffers stretching. Following@19#, if we include
stretching in the energy balance we find that the stripe lo
curvature decreases like an exponential, and the cutoff
tance decreases by increasing the height of the sheet@12#.
The curve giving the curvature versus the distance ford
cone made of a 0.05-mm-thick sheet gives a cutoff dista
that is half of the distance for a 0.1-mm-thick sheet. W
noticed no qualitative changes between the two plates,
we believe that the cutoff distance is a linear function ver
the plate thicknessh. Another way to characterize the sing
larity size is to measure the properties of the crescent sh
observed at the pushing tip.

F. The crescent singularity

Crumpling a thin sheet or a transparency leaves scars
looks like crescents. These crescents are the result of s
focusing. One wonders why the scars where the stres
focused stress are not pointlike. This is due, as discus
above, to the fact that making a singularity whose radius
curvature is of the order ofh costs more energy than pur
bending. It is to be kept in mind that the only natural leng
scale is the thickness. Instead, it is preferable to mak
crescent whose spatial extension is orders of magnit
larger thanh. It is then of great importance to measure t
size of the crescent left after crumpling. In our experime
we measured the radius of curvatureRc of the crescent as a
function of the deformation for small and large deformatio

1. Radius of the parabola for low deformations

To measure the crescent radius of curvature, we illu
nate thed cone from above, so that the light beam is perp
dicular to the ridge. The ridge reflects more light than t
rest of the plate, as its texture is affected by the bend
Figure 12 displays thed cone for a small deformation. Notic
the parabolic shape of the bright line separating the con
region from the concave region. This line defines an an

FIG. 12. d cone observed from above, and illuminated perp
dicularly to the plane of the bright parabola. The deformation
about 0.3 mm.Rf522.5 mm.
By
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smaller than 2u0 defined in Sec. III. The image looks ova
because as the plane defined by the parabola makes an
p/22a5arctane with the horizontal plane, the frame i
twisted by the same angle so that the light beam is perp
dicular to the parabola (a is defined in Fig. 5 where the
opening angle is exaggerated!.

We digitalize the image and collect the points belongi
to the bright line. We have then a parabola whose radius
curvature can be easily estimated by fitting the obtain
curve to a second-order polynomial@14,15#.

Figure 13 depicts the radius of curvature of the brig
parabola in Fig. 12 as a function ofe5d/Rf . We show the
data in a linear scale for the sake of clarity. We observe t
the radius of cuvature of the crescent scales likee21/3, where
e is defined above. In this regime, the deflection is mov
downward. This motion is due to the reaction force expe
enced by the plate at the point where the plate loses con
with the frame.

2. The radius of the crescent at high deformations

We have measured the curvature of the crescent at
deformations too. In this case the ridge is a thin line and
shape is no longer a parabola. It has a shape of a hyper
whose wings are likely to be linear. To find the cresce
radius of curvature, we follow the same method for fitting
above. Ad cone at large deformations and highlighted fro
above is displayed in Fig. 14, where we notice that the bri
line separating the convex region and the concave reg
looks like a hyperbola and defines a sharp ridge near
pushing tip~this region is the core region or the singulari
region!. Beyond a certain distance from the core region,
line becomes straight@20#. The radius of the crescent is me
sured by fitting the line in the core region to a polynomial.
Fig. 15, we show the radius of curvature of the crescent
e.0.1. The fitting procedure does not depend on the po
nomial degree we use to make the fitting. The lines in Fig.
are power laws with an exponent21/2. In the following we
present a model based on a competition between pure b
ing and pure stretching but in the region that bounds
crescent.

-
s FIG. 13. Radius of curvature of the crescent for smalle. The
line is a best fit to the power lawe21/3.
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3. Scaling for high deformations

In this section we will show that the power law can
found by considering that the concave region near the pu
ing tip, besides being stretched, is bent as well. We a
consider that the invagination is no longer moving dow
ward, but the ridges are approaching each other too. To d
let us write the bending energy

Eben5kE ~¹2j!2dS ~5.11!

and the stretching energy for such a plate:

Estr5GE ~¹2x!2dS. ~5.12!

FIG. 14. Top view of thed cone at high deformation. For th
bright line, which is no longer a parabola, but a hyperbola, one
notice a distance over which the wings of this line become line
The deformation is about 7 mm.Rf530 mm.

FIG. 15. Radius of the crescent versuse for large deformations.
The lines are best fit to the power lawe21/2.
h-
o
-
so

Herex is the Airy function,k is the bending rigidity, andG
is the stretching modulus related tok for two-dimensional
plates byG.k/h2 whereh is the thickness. If we suppos
that all the stretching in the line that delimits the conca
part and the convex part~ridge! is due to bending at the tip
the curvature¹2j can then be written asd/Rc

2 . We integrate
the bending energy over the surfaceRfRc . Hence, the bend-
ing energy is

Ebend;k~d/Rc
2!2RfRc;kd2RfRc

23 . ~5.13!

For the stretching energy we keep the same surface of i
gration. The strain created by the decay of the curvatur
due to the fact that the sheet is loaded by a small angle.
The plate experiences a forceF when creating the deflection
along the radiusRf ; the plate then has a moment at the
FRf . For high deformations, not only does the deflecti
move downward but the two ‘‘wings’’ start to approach ea
other in the azimuthal direction, which creates a characte
tic straing5(d2/Rf

2)2. The stretching energy is then

Estr;k/h2~d2/Rf
2!2RfRc;kh22d4Rf

23Rc . ~5.14!

Minimizing Ebend1Estr with respect toRc , we find that.

Rc;RfAh/d. ~5.15!

Knowing thate5d/Rf ,

Rc;ARfh/e. ~5.16!

If we consider the tip of thed cone as the core of a
dislocation whose bending energy is logarithmic@9,16#, and
if one considers two types of stretching~radial and azi-
muthal!, one recovers the scaling of ad cone obtained by
squeezing a sheet in a cone of revolution, i.e,Rc;1/e. This
scaling is probably due to the fact that the only scaling in t
particular problem, apart from the thickness, is the open

n
r.

FIG. 16. Local radius of curvature of the concave region clo
to the singularity. The line has a slope close to21.
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angle of the squeezing cone. In Fig. 16 we show the radiu
curvature of thed cone concave part close to the pushing t
For large deformations the radius scales likee21.

One possible way to observe stress focusing is by c
paring the growth of the curvature between the concave
gion and the ridge. In Fig. 17 we plot the radius of curvatu
at the ridge versus the deformation, and the slope of the
is equal to21.5. The fact that the radius of curvature at t
ridge decreases faster than the radius at the concave reg
also an indirect measurement of stress focusing inducin
curvature focusing. In the next section we will show ho
from the profiles one can also observe stress focusing
measuring the reaction force at the ridge and at the conc
part.

VI. SINGULARITY ENERGY AND FORCE
MEASUREMENTS

The crumpled paper is similar to the discovery of Lapla
and best known as the ‘‘plateau problem,’’ which consists
the determination of minimal surface, given its border~soap
film!; whereas in the crumpling problem, the volume is ke
fixed; that is, when making a ball by crumpling a piece
paper, the stress is distributed over the regions where
sheet is ‘‘postbuckled.’’ Thed-cone problem is much sim
pler than the real crumpled paper. As discussed abov
consists of fixing a border, i.e., the frame radius~Fig. 1! and
squeezing a sheet into it. The force applied to the cente
the plate is responsible for the creation of the torque t
causes the plate to deflect and gives rise to the ‘‘d cone.’’ In
this section we discuss the results of the response of the
to the external load at its center.

A. Torque from profiles

In this section we will determine the reaction forces e
perienced by the plate at the borders as a result of the e

FIG. 17. Radius of curvature of the ridge as a function of
deformation. The straight line has a slope21.5.
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nal load (F). The resultant of these forces is equal to t
external loading; we will determine the force at the rid
where most of the stress is concentrated~Fig. 2!. It is well
known in classical mechanics that the force acting in a c
tain direction is equal to the derivative of the energy w
respect to the coordinate in this direction. In our case,
reaction force experienced by the plate at the border whe
is deflected is defined by the derivative of the energy w
respect to the displacementz. The plate resists bending by
reaction force:

F reac5
]Eb

]z
;

1

z8

]

]uE S ]2z

]u2D 2

du. ~6.1!

Integrating by part we find

F reac;2
1

z8

d

duE z8z-du ~6.2!

;2z-52rf-52r
]3f

]u3
.

~6.3!

In Fig. 18 we display the third derivative of the profile at th
ridge. To measure the reaction force we derive the pro
twice versus the angleu and we calculate the slope of th
straight line where the curvature;z9 varies. The force is
supposed to increase linearly for small deformations wh
the regime is still elastic. From Fig. 18,f- enlarges expo-
nentially; we believe that this is due to the plastic transitio
However, far away from the singularity the force increas
linearly, even for large deformations. The fit in Fig. 18 is
the form (ded/a21), whereas the fit in the inset is a linear fi

FIG. 18. Third derivative of the profile (f) at the ridge versus
the deformation and at a distance of 3 mm from the tip. Inset:
third derivative at a distance of 6 mm from thed-cone tip.
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The exponential behavior of the force is also a measur
the force focusing that creates the crescent near the tip.
exponential behavior was observed in the behavior of
curvature for high deformations@Fig. 11# and was explained
as a consequence of geometry-induced stretching. To sa
energy considerations and to verify scaling consideratio
this curvature was found to decay exponentially@12#. The
reaction force (;uf-u) far from the singularity is linear ove
the same range of deformation~inset of Fig. 18!. Two re-
gions experience reaction forces and then torque, wh
gives rise to the invagination. These two regions are
ridge, and the concave part. It can be easily observed tha
ridge experiences more stress than the concave part. In
19 we displayuf-u at the ridge and at the concave regio
The slope of the fitting line in the case of the reaction fo
at the ridge is larger than the one corresponding to the c
cave part. It is clear then that the stress due to the reac
force increases faster at the ridge than at the concave
The stress is focused at the ridges where the crescent n
ation takes place. Since the plate is more deflected far a
from the singularity than closer to it, we have measured
reaction force as a function of the distance from the sin
larity for two different deformations. We would have a line
behavior for the reaction force if only bending were prese
but as the plate may be stretched, we have a nonlinea
crease of the reaction force. However, the behavior of
reaction force seems to be the same for the two distance
the following subsection, we discuss a measure of the fo
experienced by the plate at its tip.

B. Direct force measurements

As long as long the deformation is kept small during t
loading, a deflection appears and neither a singularity n
sharp ridge is observed; this regime is elastic, and bend
dominates over stretching. The force exerted by the plat
linear in the deformation. As we increase the load, the line
the ridge becomes sharper and the force is no longer lin

FIG. 19. Reaction force at the ridge and at the concave par
the deformation. The slope of the line giving the force at the rid
is twice as larger as the one corresponding to the concave part
data are taken at 3 mm from the tip.
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the regime is plastic and stretching becomes comparabl
bending. In Fig. 20, we display the force versuse. It is clear
that the opening angle defined bye at which the force satu-
rates is the same for the different frame radii. However,
maximum force at saturation is large for smaller fram
Also, it is worth noting that the force changes its slo
around e.0.1 for transparencies; this corresponds to
same value where we have observed a crossover betwee
21/3 and the21/2 scaling of the crescent radius versuse.

In Fig. 20 the maximum force at which the plate satura
scales with the frame radius likeFsat;Rf

20.77. For low de-
formations the force is linear with the deformation whe
only bending is dominant. If we assume that in the elas
regime, the work necessary to load the plate by a distand
is (Fd) and is equal to the bending energy that is prop
tional to d2/Rf

2 ~to be integrated over the plate surfaceRf
2),

we find thatF;d/Rf
2 . This result is in agreement with th

behavior of the reaction force in Fig. 18. In Fig. 21 we pl
the slopeF/d of the linear part of the force versus the fram
radius. The slope of the fitting line is close to 2. From th
scaling, the force goes likee/Rf . Now we are able to mea
sure the energy necessary to create the crescent line. In
following we show how we measure thissingularity energy.

C. Singularity’s energy

When a thin plate is bent elastically and released, it
covers its original shape. But, if the plate is bent until t
internal face experiences compression and the external
experiences stretching, the plate will have deformed pla
cally and will not recover its shape. In force measureme
the load necessary to bend the plate to the same poin
subsequent tests will be lower because the plate has
‘‘weakened.’’ In order to measure the singularity energy,
first measure the force required to reach a deformationz* ,

vs
e
he

FIG. 20. Force vse for different frame radii for transparencies
The saturation force increases when the frame radius decrease
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then release the plate, and measure the force required t
load the plate to the deformationz* . The area between th
loading lines, shown in Fig. 22, is the singularity energ
corresponding to the energy dissipated while creating
scar region. If the plate is loaded a third time, the for
follows the loading line corresponding to the second loadi

If z is the displacement variable, then the singularity e
ergy is given by

FIG. 21. Slope of the force in the elastic regime vsRf . The
slope of the fitting line is close to 2.

FIG. 22. Method by which the energy of the singularity is me
sured. Path 1 and Path 2 are the buckling of a perfectly flat p
and the reloading of the already buckled plate. The area betwee
thick line ~Path 2! and the thin line~Path 1! is the energy of the
singularity.
re-

,
e

.
-

Esing.E
0

z*
~F1 dz!Path 12E

0

z*
~F2 dz!Path 2, ~6.4!

where Path 1 and Path 2, correspond to the first and sec
loadings.F1 and F2 are the force on an undeformed pla
and the force on an already deformed plate, respectively.
subsequent loadings after the initial loading, the force alw
follows Path 2 as long as the deformation does not exc
z* . To measure the friction of the border on the plate,
‘‘unload’’ the plate, and for the same deformation, the for
shows a sharp drop. This drop in the force is due to frict
and is not taken into account, as it is eliminated when cal
lating the surface separating the two loads. Figure 23 sh
the singularity energy as a function ofe5z* /Rf . The line is
a power lawe4.

Ben Amar and Pomeau@9#, showed that the stress in th
inner region where the nonlinear effects are dominant is p
portional toe2. In their case, the total energy was reduced
the stretching energy:*(]2x/]xi]xj )

2dS.*s i j
2 dS. They

have neglected the bending energy, as it is proportiona
h3, and because any other length scale in the problem
much bigger thanh. For large deformations, this assumptio
is valid, because the frame radius is the most import
length scale in the problem as it works to squeeze the pl
The energy needed to deform the plate can also be con
ered to be the ‘‘developable cone energy,’’ since the pl
cannot recover its original shape after forming a developa
cone. If one isolates the scar region, however, by cuttin
circular region around the singularity, the outer band b
comes flat. Since the scar region forces the plate to ass
the conical form, we conclude that all of the dissipated e
ergy is concentrated in the scar region and thus this ‘‘dev
opable cone energy’’ is also equated with the ‘‘singular
energy.’’

-
te
the

FIG. 23. Singularity energy, which is the energy necessary
form the scar versus the deformation. The line is the best fit t
power lawe4.
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VII. DISCUSSION

In this paper we explored properties of the conical sin
larity in a buckled thin elastic sheet. This singularity
known as the developable cone that may be relevant
description of crumpled elastic membranes. Profiles of
surface were studied. The relation between the maxim
deflection and the deformation imposed on the plate w
derived. We have measured the geometrical or spatial de
tion of the conical singularity made of real sheets (hÞ0)
from a theoretical one. We called this deviation the anis
ropy of the plate. This anisotropy is a geometrical anom
related to the rejection of the region far from the plate t
minimizes energy and where the stress is focused. The a
ture angle of thed cone was measured and found to be u
versal and depends only on the geometry of the frame
simple model based on the minimization of the curvat
energy for an isometric deformation was sufficient to d
scribe the region outside the singularity. Also the shape
the d cone obtained from profilometry measurements w
reproduced using a simple geometrical model. The curva
at the ridge and at the concave part were both measured
a stress focusing was observed of a fast decrease of th
dius of curvature at the ridge in comparison to the curvat
of the concave region. From the profiles, it was possible
quantify the reaction force and describe how the stres
focused at the ridge where the scar appears in the form
crescent. This crescent has a curvature that scales with
deformation experienced by the plate. Two regimes w
found. At small deformations the crescent has a parab
form whose radius varies slowly with the deformation a
whose singularity size is of the order of the frame radius.
higher deformations, the crescent is squeezed and is
longer a parabola, and its radius varies faster with the de
mation; the singularity is confined to a smaller region arou
the tip. From load measurements, the scaling of the forc
the elastic regime versus the deformation and the frame
dius was found. The two different scalings of the cresc
radius versus the deformation arise from the fact that at sm
deformations and when the force is linear in the deformat
the plate is bent and no sharp ridge is observed while
aperture angle 2u0 remains constant. Beyond the crossov
where e.0.1 and where the force changes its slope,
mechanism is no longer the same: the two ridges appro
each other, the crescent is itself folded in the azimuthal
es
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rection, and the aperture angle decreases. The scaling o
crescent curvature versus the deformation is not universa
was also possible to measure the energy needed to crea
scar. We called this energy thesingularity energy. This en-
ergy was measured as the energy dissipated in the pla
form the scar. The stress focusing inducing a curvature
cusing and an increase in the singularity energy is simila
the defect-induced dislocation in the liquid crystal, where
spatial extension of the defect when squeezed into a sm
region is decreased and the curvature of the molecular pla
increases. In fact, if we look at a smectic layer in the vicin
of a core of parabolic domain, we can notice that this la
defines an object similar to ad cone. In this experiment the
stress focusing induces a strain localization near the sin
larity.

Apart from the analogy between the logarithmic dive
gence of the curvature energy, the deflection resem
Orowin’s analogy of the motion of a snake or a carpet@16#.
The strength of the dislocation in this case is measured
the maximum deflection.

Although crumpled vesicles have been observed@1#, no
systematic local study of the surface of a crumpled ves
has been performed. Profilometry using a laser beam or m
netic beads on the surface of a crumpled vesicle can com
ment freeze fracture microscopy experiments usually use
probe vesicles in suspensions. It is known that the crea
nucleation in a buckled plate is subcritical and the format
of the singularity that bounds a crease is sudden; it is the
great importance to study topological properties of such s
gularities at subcriticality@14#. In the experiment describe
above, the appearance of the invagination for small-diam
sheets is sudden and subcritical. It is of interest to study
emission of sound when the sheet buckles. Also, in r
crumpled sheets, singularities may interact, giving rise t
rich behavior, such as the one encountered in the physic
defects. This latter point is the subject of a future public
tion.
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