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Crescent singularities and stress focusing in a buckled thin sheet:
Mechanics of developable cones
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The localization of deformation is a simple consequence of the fact that bending a thin sheet is energetically
cheaper than stretching it. In this paper we investigate conical singularities that appear on a crumpled sheet and
called developable conesl cones. We found that for a sample of a finite thickness the singularity is never
pointlike but has a spatial extension in the form of a crescent. A further deformation dfdiiee leads to a
transition to a plastic deformation equivalent to a decrease in the singularity size characterized from curvature
and profile analysis. The crescent radius of curvature is measured both at small deformations and at large
deformations. It is found that, during the buckling process, the curvature of the crescent exhibits two different
scalings versus the deformation. From the cone profile, we measured the reaction force of the plate to defor-
mation; and from force measurements, the energy that is necessary to create the singularity is characterized.
[S1063-651%99)09310-1
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[. INTRODUCTION ing analysis of the FvK equations has shown that strain and
deformation energy are located within the ridge region that
Strong deformations of membranes and thin shells span geparates two singularitiefsl2]. In practice, it has been
wide range of length scales. On the microscopic scaleshown that singularity energy plays an important role in se-
quenched disorder in partially polymerized membranes antecting characteristic lengths in an axially buckled cylindrical
thermal fluctuations induce, without strain, a crumpling tran-Sheet. These lengths were shown to be the distance separat-
sition at the melting point, below which the membrane bedNg two d cones[14], whose selection was due to a compe-
haves like a two-dimensiond2D) solid. At the crumpling tition petween bending energy, vv_hlch fa_vors large creases by
transition, partially polymerized vesicles look like dried flatténing the surface, and the singularity energy, which fa-

prunes[1—3]. Some inorganic compounds such as nanotubeﬁors smaller creases by respecting geometrical constraints

were observed in a phase that is similar to a crumpled she {<e the natural curvature of the cylindrical shell. This linear
relation between the crease length and the panel radius found

[4] and could be buckled like macroscopic shefdh At experimentally in[14] was imposed, between the crease

Iaar?e fpa:jle, a(r;ddlnf th@t.l) dlmfnsggal genertz?ll rela';:wt)t/, length and the radius of a ball made by crumpling an elastic
elect-induced deformations of a space-imé Sheel alg, oot as a condition to fulfilling the scaling of the deforma-

characterized by the presence of a conical singul@éityIn tion energy versus the crease lengti]. In a study of a

interme_diate scale_s, the stabili_ty of shells and_ thin_ elas“?:onical singularity, the shape of a developable cone was cal-
plates is of great importance in structure engineering andjated from the condition of zero in-plane stress and devel-
packaging material developmefiT]. When a thin elastic gpapility [16]. However, a study of the postbuckling state is
sheet is confined to a region much smaller than its Size, thg“” |acking, which could exp|ain the appearance of the irre-
morphology of the resulting crumpled membrane is a netyersible crescent shape of conical singularities in a crumpled
work of straight ridges or folds that meet at sharp points oisheef{17].
vertices. Singularities that appear on such a crumpled sheet, In this paper we study mechanical and topological prop-
as a result of the stress focusing, have recently been therties of the crescent singularity left after postbuckling a cir-
subject of several investigatiof8—16]. For instance, in the cular sheet of thickneds Unlike zero thickness sheets stud-
case of a crumpled sheet, developable cones were found ied theoretically, the singularity in a real sheet is not a
be the solution to Fopple—von Kaan (FvK) equations for  pointlike vertex, but has a spatial extension over a ragjus
large deflection$9]. In the following we will refer to these This crescent appears as a strain-localization-induced curva-
singularities asd cones. Developable cones are a speciature focusing at the ridge separating the convex region and
class of developable surfaces. Developable surfaces are otre concave region of theé cone. This focusing is tested by
tained from, or applied to, a plane, without changing dis-measuring the growth of the curvature on the ridge and on
tances. Unlike developable surfaces, a developable cone hise concave part. It is also revealed by measuring the reac-
a zero Gaussian curvature everywhere except at the tigion force of the plate at the ridge and at the concave part.
called thesingularity, where the curvature diverges. A scal- The singularity energyis measured as the energy dissipated
when the crescent appears.
This paper begins with a description of the setup. In Sec.
*Present address: Room 3-253, Department of Mechanical Englll we present the profiles of thd cone, from which we

neering, Massachusetts Institute of Technology, 77 Mass. Averetrieve the opening and the aperture angles. In Sec. IV we
Cambridge, MA, 02139. discuss in more detail a simple mod&b] that describes the
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FIG. 2. Profile of thed cone in Cartesian coordinates. Notice the
angle 2%, that measures the aperture angle between the points
where the plate loses contact with the frame.

shaped cylinder. This bar is rigid enough to be inflexible
Motor when pushing the plate. A profilometric tip, mounted on the
active part of a position sensor transducer, enables us to
FIG. 1. Setup where thd cone is performed and where the probe the surface of the sheet. TWO. motors allow the tip tp
profilometric measurements are achieved. scan the_whole plate syrfa_ce. The first motor moves the tip
on a miniature automatic displacement guide mounted along
the radial direction and the second motor rotates the frame
ound its axis. The radial and angular directions are marked
Fig. 1 as(r) and (0), respectively. The measurement pre-
cision of the developable-cone opening angle is approxi-
mately 7x 10 # rad. The experiment is controlled and data

. . re acquired by a personal comput®C) equipped with
present force measurements from profiles and from direc nalog-to-digital converter and GPIB boards. In order to
Iqad measurements, the latter allowing us to measure tha?void stretching the plate when a deformattbis imposed,
singularity energy. Finally, an eventual analogy between th

d cone and the dislocation problem is discussed, and futur: part of the plate must lose contact with the frame, leading
AT p ' fo a concave region whose amplitude increaseabinasreases
implications are presented in Sec. VII.

and whose location is randomly distributed on the plate. If
the pushing tip deviates from the center by a distance on the
Il. EXPERIMENTAL SETUP order of a few millimeters, the characteristics of the sheet
deflection will not change significantly, but the nucleation of
Thed cone is obtained on a thin circular plate by pushingthe cone will occur in the region where the pushing tip is
a round tip(0.5 mm diametgrinto the center of the principal closest to the frame border. In some cases, two or tbur
axis of the plate. In this study we used circular plates madeones appear. Pushing the plate further, only one of the
from both 0.05- and 0.1-mm-thick sheetsopper, brass, cones remains and its amplitude increases. In the following
steel, and transparencies or acrylihe results discussed are we present local features of the buckled plate obtained by
mainly from the 0.1-mm-thick sheets. In order for the devel-probing the surface with a profilometer.
opable cone to to form, we allow the border of the sheet to
move freely in a circular rigid frame while the tip is pushed
in. The radius of the frame is 5% smaller than the sample
radiusR; (Fig. 1), whose radius ranges from 15 to 90 mm. In order to characterize the local geometry of theone
The opening anglep of the d cone (defined as the angle fully, we built a profilometer(shown in Fig. 1 that consists
between the horizontal plane and the cone convex part gef a tip connected to a transducer controlling the displace-
eratrix) is varied by pushing the tip perpendicularly to the ment of the tip. The moving frame that supports the sample
circular plate and measuring the displacenttnosing a pre- can have a very low angular velocity. The profilometer is
cision micrometer with a resolution of I6& mm. A minia- able to resolve less than 0.01 mm in the vertital and
ture load cell is mounted under the pushing tip so that théworizontal directions(, ). Figure 2 displays the profile ob-
force exerted by the plate can be measured. The pushing tipined at a given distanaefrom the singularity, and for a
is mounted on a rigid 20-cm-long and 1-cm-thick steel pen-given deformatiord. From this profile, it is possible to mea-

properties of thel cone as an isometric deformation obtained r
by pure bending. In Sec. V, we present and discuss the IoczﬁlI
properties, topological and mechanical, of theone. Sec-
tions VA, VB and VC are a detailed description of the
geometrical model already presented 15]. In Sec. VI we

Ill. PROFILES
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0.45 . . . coordinates, the plate profile looks like the ones displayed in
Fig. 4. The () sign refers to positive curvature in the con-
vex part and the <) sign refers to negative curvature in the
concave region. Each profile was obtained for a fixed dis-
035} 1 tance from the pushing tip. Figurdal}, corresponds to pro-
files of thed cone for smalld and for different distances
from the pushing tip, and the profiles for large deformations
are shown in Fig. é). It is clear from this figure that the
025 T convex part(circular curve in the figureis off-center. This
shift of the d-cone tip will be explained as particular th
cones made from a nonzero thickness sheet.

(I)max

0.15¢ | IV. ENERGY MINIMIZATION OF AN ISOMETRIC
| DEFORMATION
In the following we show that a simple model consisting
0.05 : : : of a minimization of the curvature energy, taking into ac-
002 004 006 008 01 012 count the fact that the deformation is isometric, can explain

9, the above results and can describe theone far from the
singularity. The general equation of a cone centere@,im
FIG. 3. Plate maximum deflection as a function of the anglecylindrical coordinates, is written asz=rf(6). For
between the convex part and the horizontal plane. The distance @wonvenience, we rewrite the parametric equatian,
the pushing tip is 3 mm. =rtan®(0) andr =Rcos¢(6), whereR is the distance to
the tip andé is the polar angle. A cone corresponds to a

sure the maximum deflecti made by the concave re- g!ven function <_ﬁ(6’), where ¢ is defined as above. For a
Ofma y cgiven deformatione=d/R;=tan¢,, whered is the amount

gion with the horizontal direction as a function of the ang| £ h . i iical displ CIf il 0
¢o made by the convex region and the horizontal direction® & efgrllr;?gz er vertical displacement. If we wrig(6)
0 0

From Fig. 2 we measured the aperture angle of the deflection
in the 6 direction. This angle was found to be independent of
the plate size and the deformation for a given geometry. d(0)=do+y
Figure 2 displays the maximum deflection and how the angle

26, is measured. The horizontal line corresponds to the cons : ’ o i
vex part of the cone. At high deformations, the two procer-lThe function¢(¢) defines then a cone that remains in con

. : o tact with the circular frame fof6|> 6,. The d cone is de-
dures give two different angles. From this figure we Measure. o4 from the plate over an andle equal iy #hat corre-
the maximum deflectiorb,.x, Which is the lowest point in b gle €q

the Fig. 2, Withz,,(6) =T dr(6), Wherer is the distance sponds to the deflection. We assume thét small and that

measured from the pushing tip. In Fig. 3 we display the? and ¢, are of the same order of magnitude. To first order,

; the total curvature of the surface then reduces«te(¢
dependence ob,,, Versus the deformation expressed by the+ #")IR. The corresponding enerds,. (per unit ofR) is

angle ¢o=d/R;. The best linear fit to the data in the figure

0
1+COS770—) for |0]<6,. (4.2
0

above givesp.,—3.73po. We will show in the following 7 (b+ d")2
section that this selection of aperture angl&, 2nd maxi- Efgf MR\/COS’Z(ﬁ'F ¢'°do
mum deflection as a function of the deformation can be ex- -= R
plained by a minimization of the bending energy, taking into ) 4
account the fact that the deformation is isometric. In polar | 202+ 40yt | 360— 0l+ 77_3 yz}_
o bo
¢ (mm) 4.2

For an unstretchable plate, the lengitbf the correspond-

3
1t 5 ing line atR=const must be equal to7R, so that
0.5 1[ w
0|/11( 0 277R:L=f RycoS ¢+ ¢'°do
0.5 1 o
1 1% ) 36, w\| ,
3 ~|2m=m5-200b0y=| 5~ 55| V*|R:
1.515 s 2 26,

4.3

FIG. 4. Contour plot of the sheet profile in polar coordinates vs ~ Equation(4.3) gives y as a function ofg, and 6. Re-
the angled. (a) d=1.41 mm;(b) d=5.48 mm. The axes are in placingy by its value in Eq.(4.2) and minimizingE, with
millimeters. The different curves correspond to different distancegespect to 6y, one finds 2,~2.09 rad-120° and y
from the pushing tip. ~1.38p,. This last relation confirms our assumption that
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and ¢, are of the same order of magnitude. An exact solu-

tion of a similar problem gives &~ 140° [16]. As pointed

out above, our result is valid for low deformations. The the-

oretical value of the aperture anglégis in good agreement

with the experimentFig. 2). The aperture angle between the )
points where the plate loses contact with the frame is about
(110+5)°. Experimentally, and even for largé the aper-
ture angle depends very little ash when measured in the
plate coordinates. The theoretical maximal deflection angle 0=n
Pmax= P(0) is proportional tog, and equalse(0)=(¢q

+2v)=3.76¢,. This result is also in good agreement with r Plane cut

the experimental data, even at lardesince the best fit in _ _ _

Fig. 3 gives $(0)=3.734,. It is worth noting that these F_IG. 5. G_eometrlcgl construction of tlitecone obtained after a
results are valid for elastic deformations. The global shape ofttin the axisymmetric cone by a plane.

the d cone, however, as shown in Figs. 4 and 2, is due to tri d i t at th hing tio. F Ei
geometric constraints. In Sec. V we will study the geometri—(‘ioc\le %e?ieratucﬁh 0 ir;o lmree g th et ?usthlng Inpv chr)mi :19'
cal properties of such a cone. » We notice that the circuiar part, that IS, the convex region,

is not centered at the coordinates’ origin. The obtained cone
V. LOCAL PROPERTIES OF THE DEVELOPABLE CONE Iool_<s_ as if an axisymmetric cone has_ been cut by a plane
defining then an aperture anglé In Fig. 5, we show the

In this section we present the general features of the suggeometrical location where the plane and the cone meet. In
face of a developable cone. From the profiles presented ithe following we show the origin of this “anisotropy” and a
the previous section, we can retrieve the local curvature ofjeometrical scheme of trecone.
the concave part and the riddéhe region separating the If S, A, andM belong to the cone, they are related by
concave region and the convex regi@s well as the curva-
ture of the crescent shape at the pushing tip. Also we will SM=\SA (5.
show that developable cones made from a thick shhet (
#0) are not centered at the pushing tip. We will then definevhereSiis the tip andA is on the line defined by the inter-
a function called thel-cone anisotropy, which measures how section of the moving frame and the plate of Fig. 10lis
far the finite-thicknessl cone is from the zero-thickness  on the pushing line therQA=R(cos@i+sin6j). Also we

0=0

cone. have
A. Anisotropy SA=(Rcosf—xg)i +Rsinoj — zk,
If one looks carefully at the profiles in Fig. 4, one notices _) R ) ) (5.2
that for small deformations the lines joining the convex re- SM=(Xp—Xg) i +(Ym—VYs)] +(Zm—Z5)K.

gion to the concave region are sharper than the ones corre-
sponding to large deformations. Also the origin of the circu-From Eq.(5.1) we have
lar part of the profiles is not centered at the coordinates’

origin but shifted to the right of Fig. 4. This shift is due to an Xm=XstA(RCOSH—Xs),

anisotropy of the plate. This anisotropy is due to the fact that, )

when pushing the plate to make the deflection that corre- Ym=ARsInég, (5.3
sponds to thel cone, the tip of thal cone obtained is then

shifted to allow the deflection to form. In other terms, it costs Zp=(1-N)zs.

more energy to produce a small point with a high curvature i , ,
than a large deflection with small curvature. Hence, to mini- _ !N the previous relationsxt,,ym,zy) are the coordinates
mize the energy necessary to make a sharp vertex, the sifif M and &s.¥s,zj) are the coordinates & In our caseRis
gularity is ejected out of the plate by a distance that is, fotn€ frame radius. One needs fo find a relation betweand
low deformations, equal to the frame radius, and the platé: in fact, t2h|s can be easily achieved by calculating a dis-
surface looks smooth. The generatrices no longer meet at th@Ncer “=Xq,+yy, on the cone. Ar constant we have
pushing tip. In the following we will show how, by measur- .
ing the distance by which the origin of the cone has shifted, N[(Rcosf—x5)*+ R? sin’ 6] + 2\ x(R cosf—X,)
it is possible to characterize the deviation of the real cone +x2—r2=0. (5.4)
from a theoretical cone. This shift can be quantified by mea- S
suring what we call thel-cone anisotropyA, defined as the  Thjs equation gives us(6) for a givenr. The height is now
ratio[ {(m) — {(w/2)1/ {(m), where{(6) is the height of the  given byz,=[1—\(6)]z. It is more convenient to reverse
sheet measured at the polar angland = corresponds to the  the z axis and consider a direct cone so that the generatrices
very right point in the profiles of Fig. 4. are in the half-plang>0 axis. We then define,,=d—z,,

_ (the profiles in Fig. 4 are obtained in the reversed Jaaigd

B. Geometrical model obtain
If we look at thed-cone ridges, where the crescent ap- ~ ~

pears, we find that their loci are a plane. Furthermore, the Zm=A(0)d+(1—N\(0))zs. (5.5
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FIG. 8. The anisotropy4 as a function of the distanae The
deformation is 1.5 mm.

FIG. 6. Contour plot of thed-cone profiles obtained from Eq.
(5.5. Each curve corresponds to a distance from the origin. TheVith
distancex; is set to 1. The frame radius is set to 37 mm and the

thickness to 0.1 mm. The different distancesrre2,4,6,12(scaled A(t)=[(zs—d)tana—Xs]/(Rcost —xs+ zstana). 5.7
units). .

. ) Eliminating \ (t) between Eqs(5.6) and (5.7) we find
If we plot the linesz(6) we recover the experimental

profiles in Fig. 4. In Fig. 6, we display the profiles calculated 2

from this model. The different profiles correspond to differ- X 1+ 2| (d2+R2cog6) + Y (Xs+ (R+X5)cos ]2
ent distances from the origin. The deformation is measured

by calculatingxs. The frame radius is the one used in the —R2=2Y x(R+X¢) (14 cosfy) — Vd?+ R? cos’ 6,=0.
experiments and the thickness is set to 0.1 mm. From this 5.9

figure we notice that the qualitative shape of theone can

be obtained from a simple geometrical model with the ansatz Equation(5.8) is the equation of a hyperbola whose cur-
(4.1). In Fig. 7 we plot the height,,, versus the polar angle vature at the tip is given by

6. From this figure the opening angle is equal to 114°. The

aperture angle is selected geometrically. (R+Xs) JdZ+R? co?&o 1 ( R). (5.9
. . 4 . K= ~— (X< . .
The cut in Fig. 5 then defines a hyperbola whose equation Rex(1+ cosfy) 2% s

is obtained from the following construction: The plane when
cutting the cone defines an angle so that tamv=X,,/(zy,

We showed that with this one-dimensional geometrical
—d)=—(Rcosfy)/d. The intersection of the plane and the g

model we can characterize the size of the singularity, and

cone is given by. found that it belongs to a hyperbola defined as the intersec-

_ tion of a plane with a perfect cone. For a “real” sheet, it is
X=A\Rsiné, energetically favorable to create a deflection by bending and

rejecting the singular point far away from the tip and to have

Y=—(1/sina)[x(1—\)+ AR cosé], (5.6) the obtainedd cone not have a singular tip or a vertex.
F3 C. The shift from the anisotropy
W
0.2 From Fig. 5 the anglex is given by tarw=d/R, so that

Zs= — X tana. We define the anisotropy(r,R;,Xs), keep-
ing in mind that the deflection is centeredét0:

A=[z(m)—z(wI2)][z( )
=[-rR+x(r—R)+\Bl/r(xs—R),  (5.10

whereB=r?R?—x2(r?— R?). The distances is obtained by

measuring the heights from the profiles, such as the ones

depicted in Fig. 4, and fitting the data with expresdi6ri0),

giving the anisotropy versus the frame radiRs and the

, distancer. In Fig. 8, we show an example of the anisotropy

-3 -2 -1 1 2 3 0 measured from the profiles, where the line is the best fit with

the formula(5.10 for a given deformation. The anisotropy,

FIG. 7. The plate height,, obtained from the geometrical found experimentally, decreases when increasinthis ef-

model. The parameters are the same as in Fig. 6. The distance to tfeCt is due to the fact that, close to the singularity, the plate
tip is two scaled units. suffers a stress focusing, and an irreversible deformation, due
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35 pushing tip for different deformation&) The local curvature of the
concave part, where; is constant and equal to 20 mrtb) The
ridge local curvature, where, decreases whed increases. We

FIG. 9. Concave-part local curvature versus the distance to theeported the values of the opening angle anddchot
singularity, for different smaldl. The line is a best fit to the function
U(r+rg).

the singularity, which at small deformations has a size of the

. . . same order of magnitude as the frame radius, decreases when
to stretching, would take place if we increased the deformafhe deformation increases. In Fig. 10 we depigtand r
. . s

tion. Further away from the singularity, the plate surface s;uf—versus the deformation.
fers pure bending.

In the next section we will show that the local curvature. Notice that botir andx, decrease when the deformation

of the concave part does not follow a law of the form, biut is increased. As the bending rigidity acts liké whereh is

the coordinates are shifted by a value we calhat depends small, the creation of a punctual singularity costs more en-
: e ; s h ki impl flecti ing th face.
on the deformation. The shift in coordinates’ origig is ergy than making a simple deflection by bending the surface

. : . : From Fig. 10 we notice that at small deformations the singu-
correlated to the displacement of the singulaxify We will -5 s vejected to infinity. The size of the singularity is of
show, that due to_strgss focusing, this distances decreaﬁge order of magnitude dR; or even larger. When the de-
when the deformation is increased. formation increases, the size of the singularity decreases by
increasing the distanceg andrg. The stress focusing can
be seen as a decrease in the singularity size by strain local-

We have measured the local curvature of the concave rdzation.
gion and found that, for small deformations, the radius of
curvature is linear with the distance from the tip, but the E. Curvature at high deformation: Stretching effect
origin is shifted byrg. It is well known that at each point of
a perfect cone there is no curvature towards the vertex. T
curvature decreases liker1ivherer is the distance from the
vertex. In Fig. 9, we display the local curvature versus th
distance from the pushing tip. The line is the best fit to

functiqn of the form 1/(+r5). From Fig..9 t_he orig_in of.the curvature of the concave regiga) and of the ridge lingb).
coordinates is not centered at the pushig tip, but is shifted bfach data set corresponds to a given deformation

a distance ;. This distance is found to be a decreasing func- From Fig. 11 we notice that the curvature is no longer of

tion of the deformation as well as the distange This shift 0 torm 1f but decreases exponentially with the distance,
in the cone origin is due to the fact that it is cheaper to makeﬁke Coel"""9, wherer is a characteristic distance. In Fig
, c . .

a bent smooth surface than a sharp pomtllke_ vertex V\_"th (31(51) the characteristic distaneg is constant versus the de-

high curvature. As a result of the stress focusing, the size ormation, whereas on the ridge of Fig. 11decreases with
increasing the deformation. This behavior is due to the fact
that the crescent appears only on the ridge. In other words,
the plastic deformation induced by stretching is felt on the
ridge where the plate is folded and where the stress is con-
centrated. The slope of the top line in Fig.(&lreaches a

g value that corresponds to the radius at which the yield limit

D. Size of the singularity and stress focusing

As we increase the deformation, a line with a different
hf:éxture from the rest of the plates appears at the ridges, and
the curvature increases. In order to characterize this transi-
&ion we measured the curvature at high deformations, both in
%he concave region and at the ridge. In Fig. 11 we show the

18

14

X (mm)

$

of a 0.1-mm-thick copper sheet is exceeded and where a
permanent scar appedrk3].
The deviation of the curvature fromrlbehavior to an
7 exponential is due to the fact that at lajéhe yield limit of
the material is exceeded and stretching starts to be more
6 important than pure bending because, contrary to a free
sheet, the latter system is squeezed within a circular frame.
This fact explains why the stretching effects are noticeable
FIG. 10. The shift distances and the singularity displacement and the deflection near the borders looks rather more flat-
X versusd. tened than if thel cone were border-free. As a first approxi-

10

1.2 1.6 2 2.4
d (mm)
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FIG. 12. d cone observed from above, and illuminated perpen-

dicularly to the plane of the bright parabola. The deformation is FIG. 13. Radius of curvature of the crescent for smeallThe
about 0.3 mmR;=22.5 mm. line is a best fit to the power law™ 2.

mation we assume that concave part is an isolated stripe. gyMa/ler than 2, defined in Sec. Ill. The image looks oval,

further pushing the plate beyond the yield limit the stripeP€cause as the pla_ne defined _by the parabola makes an.angle
starts to bend and the region near the singularity at the pusH’-'/,z_ a=arctane with the horizontal plgne, the fr.ame IS
ing tip suffers stretching. Following19], if we include  tWisted by the same angle so that the light beam is perpen-
stretching in the energy balance we find that the stripe locdficular to the parabolad( is defined in Fig. 5 where the
curvature decreases like an exponential, and the cutoff diPening angle is exaggerajed . .
tance decreases by increasing the height of the gh@bt We dlgltah_ze the image and collect the points beloqglng
The curve giving the curvature versus the distance far a (© the bright line. We have then a parabola whose radius of
cone made of a 0.05-mm-thick sheet gives a cutoff distancEUrvature can be easily estimated by fitting the obtained
that is half of the distance for a 0.1-mm-thick sheet. WeCUTVe to @ second-order polynom[di4, 15. _
noticed no qualitative changes between the two plates, and Figuré 13 depicts the radius of curvature of the bright
we believe that the cutoff distance is a linear function versu®@rabola in Fig. 12 as a function ef=d/R;. We show the

the plate thicknesk. Another way to characterize the singu- data in a linear scale for the sake of clarity. We observe that

! A ) ) - B 3
larity size is to measure the properties of the crescent shapB® radius of cuvature of the crescent scales *'k_é( , Where
observed at the pushing tip. e is defined above. In this regime, the deflection is moving

downward. This motion is due to the reaction force experi-
enced by the plate at the point where the plate loses contact

with the frame.
Crumpling a thin sheet or a transparency leaves scars that

looks like crescents. These crescents are the result of stress 2. The radius of the crescent at high deformations

focusing. One wonders why the scars where the stress is \we have measured the curvature of the crescent at high
focused stress are not pointlike. This is due, as discussegbformations too. In this case the ridge is a thin line and its
above, to Fhe fact that making a singularity whose radius oghape is no longer a parabola. It has a shape of a hyperbola,
curvature is of the order dfi costs more energy than pure \yhose wings are likely to be linear. To find the crescent
bending. It is to be kept in mind that the only natural lengthyagiys of curvature, we follow the same method for fitting as
scale is the thickness. Instead, it is preferable to make gpoye, Ad cone at large deformations and highlighted from
crescent whose spatial extension is orders of magnitudgnoye is displayed in Fig. 14, where we notice that the bright
larger thanh. It is then of great importance to measure thejjne separating the convex region and the concave region
size of the crescent I(_eft after crumpling. In our experiment,goks like a hyperbola and defines a sharp ridge near the
we measured the radius of curvatiRg of the crescent as a pyshing tip(this region is the core region or the singularity
function of the deformation for small and large deformanons.regior)_ Beyond a certain distance from the core region, the
line becomes straigli20]. The radius of the crescent is mea-
sured by fitting the line in the core region to a polynomial. In

To measure the crescent radius of curvature, we illumiFig. 15, we show the radius of curvature of the crescent for
nate thed cone from above, so that the light beam is perpen<>0.1. The fitting procedure does not depend on the poly-
dicular to the ridge. The ridge reflects more light than thenomial degree we use to make the fitting. The lines in Fig. 15
rest of the plate, as its texture is affected by the bendingare power laws with an exponent1/2. In the following we
Figure 12 displays thd cone for a small deformation. Notice present a model based on a competition between pure bend-
the parabolic shape of the bright line separating the conveing and pure stretching but in the region that bounds the
region from the concave region. This line defines an anglerescent.

F. The crescent singularity

1. Radius of the parabola for low deformations
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FIG. 14. Top view of thed cone at high deformation. For the
bright line, which is no longer a parabola, but a hyperbola, one can d (mm)
notice a distance over which the wings of this line become linear. ) )
The deformation is about 7 mriR;=30 mm. FIG. 16. Local radius of curvature of the concave region close

to the singularity. The line has a slope close-td.
3. Scaling for high deformations . . . . . L
_ i ) Herey is the Airy function,« is the bending rigidity, an
In this section we will show that the power law can be g the stretching modulus related tofor two-dimensional
found by considering that the concave region near the pushyioies byG=«/h? whereh is the thickness. If we suppose

ing tip, besides being stretched, is bent as well. We als@,a¢ g the stretching in the line that delimits the concave

consider that .the invagination is'no longer moving dOW”'part and the convex paftidge) is due to bending at the tip,
ward, but the ridges are approaching each other too. To do $Re curvaturev 2¢ can then be written ang_ We integrate

let us write the bending energy the bending energy over the surfaReR.. Hence, the bend-

ing energy is
Eper= KJ (V28)2dS (5.11 Epeng~ <(d/RY)?R(R.~ kd?R(R; 3. (5.13
and the stretching energy for such a plate: For the stretching energy we keep the same surface of inte-
gration. The strain created by the decay of the curvature is
fum6ftas (s1a theto e fct b e shect s loaded by« mal anle

along the radiusk; ; the plate then has a moment at the tip
10 FR;. For high deformations, not only does the deflection
move downward but the two “wings” start to approach each
other in the azimuthal direction, which creates a characteris-
tic strain y=(d?/R?)?. The stretching energy is then

Eq~ x/h?(d%/R?)?R¢R.~ kh2d*R; °R,. (5.19
Minimizing Epengt Eo With respect taR., we find that.

R.~Rsyh/d. (5.15
Knowing thate=d/Rs,

R.~ VR¢h/e. (5.16

If we consider the tip of thed cone as the core of a
1 dislocation whose bending energy is logarithrf¢l6], and
01 1 if one considers two types of stretchirgadial and azi-
mutha), one recovers the scaling ofdacone obtained by
squeezing a sheet in a cone of revolution, Rg;-1/e. This
FIG. 15. Radius of the crescent versufor large deformations.  scaling is probably due to the fact that the only scaling in this
The lines are best fit to the power laav /2. particular problem, apart from the thickness, is the opening

R (mm)

€
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FIG. 17. Radius of curvature of the ridge as a function of the FIG. 18. Third derivative of the profiled) at the ridge versus
deformation. The straight line has a slopé..5. the deformation and at a distance of 3 mm from the tip. Inset: the

third derivative at a distance of 6 mm from tecone tip.

angle of the squeezing cone. In Fig. 16 we show the radius of
curvature of thed cone concave part close to the pushing tip.nal load F). The resultant of these forces is equal to the
For large deformations the radius scales liké". external loading; we will determine the force at the ridge
One possible way to observe stress focusing is by comwhere most of the stress is concentratEdy. 2). It is well
paring the growth of the curvature between the concave reknown in classical mechanics that the force acting in a cer-
gion and the ridge. In Fig. 17 we plot the radius of curvaturetain direction is equal to the derivative of the energy with
at the ridge versus the deformation, and the slope of the lineespect to the coordinate in this direction. In our case, the
is equal to—1.5. The fact that the radius of curvature at thereaction force experienced by the plate at the border where it
ridge decreases faster than the radius at the concave regionigsdeflected is defined by the derivative of the energy with
also an indirect measurement of stress focusing inducing eespect to the displacemefit The plate resists bending by a
curvature focusing. In the next section we will show howreaction force:
from the profiles one can also observe stress focusing by

measuring the reaction force at the ridge and at the concave dEp 1 9 7L ?
part. Freac_a_g -~ Z (9_0 (9_02 (6.1)
VI. SINGULARITY ENERGY AND FORCE Integrating by part we find
MEASUREMENTS
The crumpled paper is similar to the discovery of Laplace 1d o
and best known as the “plateau problem,” which consists in Freac™ — 7 @f {'¢"de 6.2
the determination of minimal surface, given its bor¢&vap
film); whereas in the crumpling problem, the volume is kept
fixed; that is, when making a ball by crumpling a piece of ” " L)
paper, the stress is distributed over the regions where the ~—{'=-r¢ :_rﬁ-
sheet is “postbuckled.” Thel-cone problem is much sim- 6.3

pler than the real crumpled paper. As discussed above, it

2082';;?n0f2x;29eei ?r?t:)d?[r’_ll_ﬁé’ }Qﬁ;gimengd(g?hel) caenn(:er OIP Fig. 18 we display the third derivative of the profile at the
q 9 : pp idge. To measure the reaction force we derive the profile

the plate is responsible for the .creat!on of the torc,|'ue tha%wice versus the anglé and we calculate the slope of the
causes the plate to deflect and gives rise to thedne.” In

. . . traight line where the curvature {” varies. The force is
this section we discuss the results of the response of the plaie . . .
. supposed to increase linearly for small deformations when
to the external load at its center. . S . . .
the regime is still elastic. From Fig. 18" enlarges expo-
nentially; we believe that this is due to the plastic transition.
However, far away from the singularity the force increases
In this section we will determine the reaction forces ex-linearly, even for large deformations. The fit in Fig. 18 is of

perienced by the plate at the borders as a result of the extethe form de¥2—1), whereas the fit in the inset is a linear fit.

A. Torque from profiles
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FIG. 19. Reaction force at the ridge and at the concave part vs
the deformation. The slope of the line giving the force at the ridge 0.00 . | ) \ ) | ) | ) |
is twice as larger as the one corresponding to the concave part. Th 0.00 0.05 0.10 0.15 0.20 0.25
data are taken at 3 mm from the tip.
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The exponential behavior of the force is also a measure of FIG. 20. Force v for different frame radii for transparencies.
the force focusing that creates the crescent near the tip. Thihe saturation force increases when the frame radius decreases.
exponential behavior was observed in the behavior of the
curvature for high deformatiori&ig. 11] and was explained the regime is plastic and stretching becomes comparable to
as a consequence of geometry-induced stretching. To satisBending. In Fig. 20, we display the force versudt is clear
energy considerations and to verify scaling considerationghat the opening angle defined byat which the force satu-
this curvature was found to decay exponentidlly?]. The rates is the same for the different frame radii. However, the
reaction force {|¢"”|) far from the singularity is linear over maximum force at saturation is large for smaller frames.
the same range of deformatigimset of Fig. 18. Two re-  Also, it is worth noting that the force changes its slope
gions experience reaction forces and then torque, whiclround e=0.1 for transparencies; this corresponds to the
gives rise to the invagination. These two regions are theame value where we have observed a crossover between the
ridge, and the concave part. It can be easily observed that the 1/3 and the—1/2 scaling of the crescent radius versus
ridge experiences more stress than the concave part. In Fig. In Fig. 20 the maximum force at which the plate saturates
19 we display| ¢”| at the ridge and at the concave region. scales with the frame radius likeg,— R{°'77. For low de-

The slope of the fitting line in the case of the reaction forceformations the force is linear with the deformation where
at the ridge is larger than the one corresponding to the corenly bending is dominant. If we assume that in the elastic
cave part. It is clear then that the stress due to the reactioregime, the work necessary to load the plate by a distdnce
force increases faster at the ridge than at the concave pait (Fd) and is equal to the bending energy that is propor-
The stress is focused at the ridges where the crescent nucléenal to dlef (to be integrated over the plate surffRé),
ation takes place. Since the plate is more deflected far awaye find thatF~d/R?. This result is in agreement with the
from the singularity than closer to it, we have measured thgehavior of the reaction force in Fig. 18. In Fig. 21 we plot
reaction force as a function of the distance from the singuthe slopeF/d of the linear part of the force versus the frame
larity for two different deformations. We would have a linear radjus. The slope of the fitting line is close to 2. From this
behavior for the reaction force if only bending were presentgcajing, the force goes like/R;. Now we are able to mea-
but as the plate may be stretched, we have a nonlinear ingyre the energy necessary to create the crescent line. In the

crease of the reaction force. However, the behavior of thgg|iowing we show how we measure thingularity energy
reaction force seems to be the same for the two distances. In

the following subsection, we discuss a measure of the force

. e C. Singularity’s ener
experienced by the plate at its tip. gularity 9

When a thin plate is bent elastically and released, it re-
covers its original shape. But, if the plate is bent until the
internal face experiences compression and the external face

As long as long the deformation is kept small during theexperiences stretching, the plate will have deformed plasti-
loading, a deflection appears and neither a singularity nor aally and will not recover its shape. In force measurements,
sharp ridge is observed; this regime is elastic, and bendinthe load necessary to bend the plate to the same point, in
dominates over stretching. The force exerted by the plate isubsequent tests will be lower because the plate has been
linear in the deformation. As we increase the load, the line atweakened.” In order to measure the singularity energy, we
the ridge becomes sharper and the force is no longer lineafirst measure the force required to reach a deformation

B. Direct force measurements
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FIG. 23. Singularity energy, which is the energy necessary to
form the scar versus the deformation. The line is the best fit to a
power lawe®.

FIG. 21. Slope of the force in the elastic regime Rs. The
slope of the fitting line is close to 2.

then release the plate, and measure the force required to re- - -
load the plate to the deformatiart. The area between the Esinng (F1 d2)pam 1—J (F2,d2)pana (6.9
loading lines, shown in Fig. 22, is the singularity energy, 0 0
corresponding to the energy dissipated while creating the
scar region. If the plate is loaded a third time, the forceyhere path 1 and Path 2, correspond to the first and second
foIIows_the Ioa_dmg line corresp_ondmg to the se_cond |0_ad'n9|oadings.F1 andF, are the force on an undeformed plate
If zis the displacement variable, then the singularity en-ynq the force on an already deformed plate, respectively. For
ergy is given by subsequent loadings after the initial loading, the force always
follows Path 2 as long as the deformation does not exceed
0.15 ‘ ‘ Z*. To measure the friction of the border on the plate, we
I “unload” the plate, and for the same deformation, the force

shows a sharp drop. This drop in the force is due to friction
and is not taken into account, as it is eliminated when calcu-
/ z lating the surface separating the two loads. Figure 23 shows
P the singularity energy as a function efz*/R;. The line is
01y / I a power lawe®.
Path 1 /4 \ Ben Amar and Pomea|®], showed that the stress in the
inner region where the nonlinear effects are dominant is pro-
Path 2 portional toe?. In their case, the total energy was reduced to
/ the stretching energyyf (d2x/dx;dx;)’°dS=[oFdS. They
0.05 / il have neglected the bending energy, as it is proportional to
/ h3, and because any other length scale in the problem is
much bigger that. For large deformations, this assumption
is valid, because the frame radius is the most important
length scale in the problem as it works to squeeze the plate.
The energy needed to deform the plate can also be consid-
0 ered to be the “developable cone energy,” since the plate
0 1 2 3 4 5 6 7 cannot recover its original shape after forming a developable
cone. If one isolates the scar region, however, by cutting a
circular region around the singularity, the outer band be-
FIG. 22. Method by which the energy of the singularity is mea-comes flat. Since the scar region forces the plate to assume
sured. Path 1 and Path 2 are the buckling of a perfectly flat platéhe conical form, we conclude that all of the dissipated en-
and the reloading of the already buckled plate. The area between tt&§gy is concentrated in the scar region and thus this “devel-
thick line (Path 2 and the thin line(Path 1 is the energy of the opable cone energy” is also equated with the “singularity
singularity. energy.”

Force (kg)

z (mm)
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VII. DISCUSSION rection, and the aperture angle decreases. The scaling of the
crescent curvature versus the deformation is not universal. It

.In th|s paper we explored properties of the c_omcal SINGYYas also possible to measure the energy needed to create the
larity in a buckled thin elastic sheet. This singularity is

surface were studied. The relation between the maximum

deflection and the deformation imposed on the plate Wacusing and an increase in the singularity energy is similar to
. P . Pl **he defect-induced dislocation in the liquid crystal, where the
derived. We have measured the geometrical or spatial devi

. ) . : %’patial extension of the defect when squeezed into a smaller
tion of the conical singularity made of real sheets#(0) region is decreased and the curvature of the molecular planes

from a theoretical one. We called this deviation the ar“SOt'increases. In fact, if we look at a smectic layer in the vicinity

ropy of the plate. This anisotropy is a geometrical anomalyof a core of parabolic domain, we can notice that this layer

:ﬁilﬁitri?zteos t:r?e:eje;trlnc()jnv:r]:etrheetrzzg;ct)rneézri;r?orzut;]: dpl_l"f‘;ee t(:a;dfafines an object similar to @& cone. In this experiment the
9y : Pfress focusing induces a strain localization near the singu-
ture angle of thal cone was measured and found to be um:&arity
eneFr)gy for an isometric deformation was sufficient to de-2oncc of the curvature energy, the deflection resembles
scribe the region outside the singularity. Also the shape o rowin’s analogy of the motion of a snake or a carfi.

: ' he strength of the dislocation in this case is measured by
the d cone obtained from profilometry measurements WaSy o maximum deflection

reproduced using a simple geometrical model. The curvature Although crumpled vesicles have been obserf no

at the ridge an_d at the concave part were both measured, allstematic local study of the surface of a crumpled vesicle
a stress focusing was observed of a fast decrease of the rg-

dius of curvature at the ridge in comparison to the curvatur as been performed. Profilometry using a laser beam or mag-
. 9 P: . : Setic beads on the surface of a crumpled vesicle can comple-
of the concave region. From the profiles, it was possible t

. : . Inent freeze fracture microscopy experiments usually used to
quantify the reaction force and describe how the stress IBrobe vesicles in suspensions. It is known that the crease’s

focused at the ridge where the scar appears in the form of fucleation in a buckled plate is subcritical and the formation

crescent. This crescent has a curvature that scales with ﬂ?)? the singularity that bounds a crease is sudden: it is then of

;joeljﬁ;mf{ogmz)l(lpggfeor:?ﬁ:ﬂC?E]/St?ﬁe Fﬂ?éié;\f[v%;gg;me;avgglri reat importance to study topological properties of such sin-
form Whose radius varies slowly with the deformat?on and ularities at subcriticalitf14]. In the experiment described
y above, the appearance of the invagination for small-diameter

whose singularity size is of the order of the frame radius. Atsheets is sudden and subcritical. It is of interest to study the

lk:)lghg: ;eggngg)n;ﬁ dtri]ti rgﬁige\?atlrigs ?g:ti?f/vei?h ‘3?3 d':forr]_mission of sound when the sheet buckles. Also, in real
9 P ’ rumpled sheets, singularities may interact, giving rise to a

mation; the singularity is confined to a smaller region aroung behavior, such as the one encountered in the physics of

the elastic regime versus the deformation and the frame r'aiefects. This latter point is the subject of a future publica-

dius was found. The two different scalings of the crescen
radius versus the deformation arise from the fact that at small
deformations and when the force is linear in the deformation
the plate is bent and no sharp ridge is observed while the We thank Jean-Christophe @@ard for his valuable col-
aperture angle &, remains constant. Beyond the crossoverlaboration in Secs. IV and V A-V C. This work was financed
where e=0.1 and where the force changes its slope, then part by the DICyT of the University of Santiago, Under
mechanism is no longer the same: the two ridges approadBrant No. 049631CH, and by a “Catedra Presidencial en
each other, the crescent is itself folded in the azimuthal diCiencias.”
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